Skip to content

SXFive-TACTIS

指间可及的电子探针显微分析仪
自1950年开创电子探针微量分析以来,CAMECA已发布了几代产品,所有这些产品都被证明具有出色的分析性能和可靠性。新SXFive-TACTIS以此为基础,在用户友好的环境中提供增强的成像和定量分析性能。
  • 产品概述 +


    初学者/专家双界面 - 适用于多用户环境
    SXFive-TACTIS双界面设计,充分利用一个工具服务于不同的用户-。在初学者模式下,通过直观的触摸屏界面,可以轻松进行仪器配置、操作以及基本的成像和数据处理。在专家模式下,该界面专为熟练用户设计,他们可以访问不同的工具参数和软件选项。

    增强的BSE成像,特别是在低电压下尤其明显
    SXFive-TACTIS配备了一个额外的BSE探测器,特别是在超低电压下,可提供卓越的图像质量(5 kV时的空间分辨率为15 nm或更好)。这种新型BSE低kV探测器使您能够快速、准确地识别样品中感兴趣的区域,从而充分利用功能强大的FE-EPMA,更好的检测痕量元素。

    集成的EDS超映射
    SXFive-TACTIS配有一个完全集成的电子色散谱仪超映射模块,可以更快、更轻松地进行数据处理和分析。使用新EDS HyperMap模块,您可以收集每个像素的完整EDS光谱并同时提取定量结果。

    EPMA触手可及……
    凭借其独特、创新的触摸屏界面以及许多其他高效和易用的增强功能,SXFive-TACTIS使EPMA可触摸控制,同时具有出色的分析性能、分辨率或灵敏度。

    • “X Live”功能允许一键采集实时WDS和EDS X射线图像,以复合或叠加模式快速生成而有用的样品成分概览
    • 完整的远程控制,包括SEM成像、允许用户从他们的智能手机、平板电脑或远程计算机上运行实验。
    • ShuttleXpress是一款全新的符合人体工程学的控制器,可实现舒适高效的工作流程
    • 经过重新设计的全面在线帮助便于访问,用于在工具设置和分析过程中提供持续支持。
    SXFive/SXFiveFE 类似,SXFive-TACTIS有两种仪器配置:通用W/LaB6源或FE源。
  • 看看SXFive-TACTIS 能够做什么 +

  • 文档 +

  • 科学出版物 +


    See below a selection of scientific publications by users of CAMECA EPMA.
    Click on your field of interest:
    - Intrumentation
    - Trace elements
    - Small areas
    - Mineralogy / Geology
    - Geochronology
    - Quantification
    - Light elements / Soft X-rays
    - Biology / Life sciences
    - Nuclear sciences

    Instrumentation

    Quantitative Analysis and High Resolution X-ray Mapping with a Field Emission Electron Microprobe. C. Hombourger, M. Outrequin. Microscopy Today, Volume 21, Number 3, pp 10-15, May 2013

    Renewal of the shielded Electron Probe Microanalyser (EPMA) in the CEA LECA-STAR hot laboratory: safety and technical improvements.
    J. Lamontagne, T. Blay, P. Navarra. Poster presentation at Hotlab conference, Dimitrovgrad, Russia, 2010

    Cathodoluminescence imaging and titanium thermometry in metamorphic quartz. F. S. Spear, D. A. Wark, J. metamorphic Geol., 27, pp 187-205, (2009)

    Constructing ternary phase diagrams directly from EPMA compositional maps. D.R. Snoeyenbos, D. A. Wark, J. C. Zhao, Microscopy and Microanalysis 14 (Suppl. 2), pp 1276-1277 (2008)
    > Download abstract

    Imaging of cathodoluminescence zoning in calcite by scanning electron microscopy and hyper-spectral mapping. M. Lee, R.W. Martin, C. Trager-Cowan and P.R. Edwards, Journal of Sedimentary Research 75, pp 313-322 (2005)

    An expert system for EPMA. Cecile Fournier, Claude Merlet, Pierre F. Staub, Olivier Dugne. Mikrochim. Acta 132, pp 531-539 (2000)

    Spectral decomposition of wavelength dispersive X-ray spectra: implications for quantitative analysis in the electron probe microanalyser. G. Rémond, J. L. Campbell, R. H. Packwood, and M. Fialin, Scanning Microscopy Supplement, 7, pp 89–132 (1993)

    Top of page

    Trace elements

    Determination of Nb, Ta, Zr and Hf in micro-phases at low concentrations by EPMA. F. Kalfoun, C. Merlet, and D. Ionov, Mikrochimica Acta, 139, pp 83–91 (2002) 
     
    Advances in electron microprobe trace-element analysis. B. W. Robinson and J. Graham, Journal of Computer-Assisted Microscopy, vol. 43, p. 263–265 (1992)

    Electron microprobe determination of minor and trace transition elements in silicate minerals: a method and its application to mineral zoning in the peridotite nodule PHN 1611. C. Merlet and J. L. Bodinier, Chemical Geology, 83, pp 55–69 (1990)

    Top of page

    Small areas

    High spatial resolution electron probe microanalysis of tephras and melt inclusions without beam-induced chemical modification. C. Hayward, The Holocene, published online 8 August 2011  

    Identification by EPMA of submicron borides in joints of nickel base superalloys. C. Pascal, C. Merlet, R. M. Marin-Ayral, J. C. Tédenac, and B. Boyer, Mikrochimica Acta vol. 145, Numbers 1-4, pp 147–151 (2004)

    Submicrometer phase chemical composition analysis with an electron probe microanalyser. F. C. Y. Wang, X-Ray Spectrometry, 23, pp 203–207 (1994)  

    Scanning electron microscopy techniques in the study of atmospheric aerosol particles. J. C. Seymour, R. N. Guillemette, and N. W. Tindale, Proceedings of the 28th Annual MAS Meeting, Ed. J.J. Friel, New Orleans, LA, pp 65–66 (1994)

    Top of page

    Mineralogy/Geology

    New evidence for Palaeoproterozoic High Grade Metamorphism in the Trivandrum Block, Southern India. Harley S.L. and Nandakumar V. Precambrian Resaerch 280 (2016), Pages 120-138

    Accessory Mineral Behaviour in Granulite Migmatites: a Case Study from the Kerala Khondalite Belt, India. Harley S.L. and Nandakumar V (2014), Journal of Petrology, Volume 55, Issue 10, Pages 1965-2002. DOI: 10.1093/petrology/egu047

    Opaque minerals, magnetic properties, and paleomagnetism of the Tissint Martian meteorite. Jérôme Gattacceca, Roger H. Hewins, Jean-Pierre Lorand, Pierre Rochette, France Lagroix, Cécile Cournède, Minoru Uehara, Sylvain Pont, Violaine Sautter, Rosa. B. Scorzelli, Chrystel Hombourger, Pablo Munayco, Brigitte Zanda, Hasnaa Chennaoui, Ludovic Ferrière. Meteoritics & Planetary Science 1-18 (2013)
    http://onlinelibrary.wiley.com/doi/10.1111/maps.12172/full

    Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Rita A. Cabral, Matthew G. Jackson, Estelle F. Rose-Koga, Kenneth T. Koga, Martin J. Whitehouse, Michael A. Antonelli, James Farquhar, James M. D. Day, Erik H. Hauri. NATURE 496, 490-493 (25 April 2013)
    http://www.nature.com/nature/journal/v496/n7446/full/nature12020.html

    How continuous and precise is the record of P–T paths? Insights from combined thermobarometry and thermodynamic modelling into subduction dynamics (Schistes Lustrés, W. Alps).
    A. Plunder, P. Agard, B. Dubacq, C. Chopin, M. Bellanger. Journal of Metamorphic Geology (April 2012), v.30, issue 3, p. 323-346, DOI: 10.1111/j.1525-1314.2011.00969.x

    Evaporation and recondensation of sodium in Semarkona Type II chondrules.
    Roger H. Hewins, Brigitte Zanda, Claire Bendersky. Geochimica et Cosmochimica Acta, Volume 78, 1 February 2012, Pages 1-17, ISSN 0016-7037, 10.1016/j.gca.2011.11.027.
    http://www.sciencedirect.com/science/article/pii/S0016703711007022

    Subduction interface processes recorded by eclogite-facies shear zones (Monviso, W Alps). S. Angiboust, P. Agard, H. Raimbourg, P. Yamato, B. Huet, Lithos, Volume 127, Issues 1–2, November 2011, Pages 222–238

    Minerals of Britain and Ireland.
    Tindle, A.G. Terra Publishing, Hemel Hempstead, Hertfordshire. 624 pp. (2008)

    Gold mineralization within the Witwatersrand Basin, Sout Africa: evidence for a modified placer origin, and the role of the Vredefort impact event. C. L. Hayward, W. U. Reimold, R. L. Gibson & L. J. Robb. Geological Society, London, Special Publications v. 248; p. 31-58; DOI: 10.1144/GSL.SP.2005.248.01.02 (2005)

    Liddicoatite and associated species from the Mc Combe spodumene-subtype rare-element granitic pegmatite, Northwestern Ontario, Canada. Tindle, A.G., Selway, J.B. and Breaks, F.W., Can. Mineral. 43, 769-793 (2005)

    Tourmaline in petalite-subtype granitic pegmatites: evidence of fractionation and contamination from the Pakeagama Lake and Separation Lake areas of NW Ontario, Canada. Tindle, A.G., Breaks, F.W. and Selway, J.B. Can. Mineral. 40, 753-788 (2002)

    Columbite-tantalite mineral chemistry from rare-element granitic pegmatites: Separation Lake area, N.W. Ontario, Canada. Tindle, A.G. and Breaks, F.W., Mineralogy & Petrology 70, 165-198 (2000)

    Tantalum mineralogy of rare-element granitic pegmatites from the Separation Lake area, NW Ontario, Canada. Tindle, A.G. and Breaks, F.W. Ontario Geological Survey, Open File Report 6022, 378pp (2000)

    A Reappraisal of the Pressure-Temperature Path of Granulites from the Kerala Khondalite Belt, Southern India. V. Nandakumar and Simon Leigh Harley. The Journal of Geology 108(6):687-703 · November 2000

    Oxide minerals of the Separation Rapids Rare-Element Granitic Pegmatite Group, northwestern Ontario. Tindle, A.G. and Breaks, F.W., Can. Mineral. 36, 609-635 (1998)

    Wodginite-group minerals from the Separation Rapids Rare-Element Granitic Pegmatite Group, northwestern Ontario. Tindle, A.G., Breaks, F.W. and Webb, P.C., Can. Mineral. 36, 637-658. (1998)

    • Fe2+ and Fe3+

    Accurate determination of ferric iron in garnets. Ryan J. Quinn, John W. Valley, F. Zeb Page, John H. Fournelle, American Mineralogist, Volume 101, pages 1704–1707. (2016)

    Aluminum and iron behavior in glasses from destabilized spinels: A record of fluid/melt-mineral interaction in mantle xenoliths from Massif Central, France. Michel Fialin, Christiane Wagner, American Mineralogist, Volume 100, pages 1411–1423. (2015)

    Determination of Fe3+/Fe using the electron microprobe: A calibration for amphiboles. William M. Lamb, Renald Guillemette, Robert K. Popp, Steven J. Fritz, Gregory J. Chmiel, American Mineralogist, Volume 97, pages 951–961. (2012)

    Iron speciation using electron microprobe techniques: application to glassy melt pockets within a spinel lherzolite xenolith. Michel Fialin, Christiane Wagner, M.-L. Pascal, Mineralogical Magazine, April 2011, Vol. 75(2), pp. 347–362. (2011)

    Quantitative electron microprobe analysis of Fe3+/ΣFe: Basic concepts and experimental protocol for glasses. Michel Fialin, Antoine Bézos, Christiane Wagner, Veronique Magnien, Eric Humler, American Mineralogist, Volume 89, pages 654–662. (2004)

    Quantification of Fe2+/Fe3+ by Electron Microprobe Analysis – New Developments. H. E. Höfer, Hyperfine Interactions 144/145: 239–248. (2002) 

    Top of page

    Geochronology

    Electron Microprobe Petrochronology. Williams, M.L., Jercinovic, M.J., Mahan, K.H., and Dumond, G. (2017) Reviews in Mineralogy and Geochemistry 83; 153-182.

    Contributions of U-Th-Pb dating on the diagenesis and sediment sources of the lower group (BI) of the Mbuji-Mayi Supergroup (Democratic Republic of Congo). C. François et al. Precambrian Research 298 (2017) 202–219

    The Shallow Plumbing System of Piton de la Fournaise Volcano (La Re¤union Island, Indian Ocean) Revealed by the Major 2007 Caldera-Forming Eruption.
    A. Di Muro et al. Journal of Petrology, Volume 55, Issue 7, 1 July 2014, Pages 1287–1315, https://doi.org/10.1093/petrology/egu025

    Limitations of chemical dating of monazite. Frank S. Spear, Joseph M. Pyle, Daiele Cherniak, Chemical Geology 266, pp 227-239 (2009) 

    Dating metamorphic reactions and fluid flow: application to exhumation of high-P granulites in a crustal-scale shear zone, western Canadian Shield. Mahan KH, Goncalves P, Williams ML, Jercinovic MJ (2006) Journal of Metamorphic Geology 24:193-217.

    Electron probe (Ultrachron) microchronometry of metamorphic monazite: Unraveling the timing of polyphase thermotectonism in the easternmost Wyoming Craton (Black Hills, South Dakota). Dahl, P.S. et al., American Mineralogist, 90, pp 1712-1728 (2005)

    Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: Background acquisition, interferences, and beam irradiation effects. M. J. Jercinovic and M. L. Williams, American Mineralogist (2004)

    Microprobe monazite geochronology: putting absolute time into microstructural analysis. M. L. Williams and M. J. Jercinovic, Journal of Structural Geology, 24, pp 1013-1028 (2002)
     
    Electron microprobe dating of monazite. J. M Montel, S. Foret, et al, Chemical Geology 131,  pp 37–53 (1996)

    Top of page

    Quantification

    The tectono-metamorphic evolution of metasedimentary rocks of the Nampo group outcropped in the area of the Daecheon Beach and Maryangri, Seocheon-gun, Chungcheongnam-do. Yong-Sun Song, Jungyoun Choi, and Kye-Hun Park. Jour. Petrol. Soc. Korea Vol.17, N° 1, p 1-15 (2008) (article in Korean)

    Assessment of the primary structure of slabs and the influence on hot- and cold-rolled strip structure. Hubert Presslinger, Michael Mayr, Ernst Tragl, Christian Bernhard. Steel Research Int. 77 N02 (2006)

    Capability and uncertainty in multilayer quantitative procedure with Electron Probe Microanalysis. C. Merlet, Proceed. of Microscopy and Microanalysis, Edited by E. Voelkl, D. Piston, R. Gauvin, A. J. Lockley, G. W. Bailey, and S. Mckernan, Microscopy and Microanalysis, Vol 8, supp.2, Cambridge University press, pp 428–429 (2002)
     
    Study of surface modification of uranium and UFe2 by various surface analysis techniques. O. Bonino, O. Dugne, C. Merlet, E. Gat, Ph. Holliger, and M. Lahaye, Journal of Nuclear Materials 294, 3, pp 305 (2001)

    The dependence of the optical energies on InGaN composition. K. P. O'Donnell, et al, Materials Science and Engineering: B82, pp 194–196 (2001)

    EPMA sputter depth profiling: a new technique for quantitative in-depth analysis of layered structures. P. Karduck and A. von Richthofen, Proc. 29th annual MAS meeting, pp 205–206 (1995)

    Top of page

    Light elements / Soft X-rays

    Low-voltage electron-probe microanalysis of Fe–Si compounds using soft X-rays. P. Gopon, J. Fournelle, P.E. Sobol and X. Llovet. Microsc Microanal 2013;19:1698–708. http://dx.doi.org/10.1017/S1431927613012695

    Electron probe microanalysis near phase boundaries of Cu-TiN system. C. Fournier, S. Lequeux, C. Fucili, F. Le Guyadec, and C. Merlet, Proceedings 3rd Regional Workshop EMAS, Barcelona, Spain, p 43 (1998)

    Electron-probe microanalysis of ultra-light elements in multiphase diffusion couples. W. Lengauer, J. Bauer, M. Bohn, H. Wiesenberger, and P. Ettmayer, Proc. 4th EMAS European workshop, p 374 (1995)

    Electron probe microanalysis of submicron coatings of ultralight elements. P. Willich and R. Bethke, Microbeam Analysis, 2, pp 45–52 (1993)

    EPMA studies of L-emission spectra and measurements on Mn La self-absorption coefficient as indicator of its chemical state in minerals. I. P. Laputina, V. A. Batyrev, V. V. Changulov, and I. B. Baranova, Proc. 4th EMAS European workshop, pp 370 (1995)

    Top of page

    Biology / Life sciences

    Distinguishing geology from biology in the Ediacaran Doushantuo biota relaxes constraints on the timing of the origin of bilaterians. Cunningham JA, Thomas CW, Bengtson S, Kearns SL, Xiao S, Marone F, Stampanoni M, Donoghue PC. Proc Biol Sci. 2012 Jun 22;279(1737):2369-76 (2012)

    In situ identification and X-ray imaging of microorganisms distribution on the Tatahouine meteorite. Lemelle L, Salome M, Fialin M, Simionovici A , Gillet P. Spectrochimica Acta Part B-Atomic Spectroscopy, vol. 59, p. 1703-1710 (2004)

    Top of page

    Nuclear sciences

    Heat capacity of Bi2UO6. K. Popa, O. Beneš, P. E. Raison, J-C. Griveau, P. Pöml, E. Colineau, R.J.M. Konings, J. Somers. Journal of Nuclear Materials, Vol. 465, p. 653-656, doi:10.1016/j.jnucmat.2015.06.055 (2015)

    ECRIX-H Irradiation: Post-Irradiation Examinations and Simulations. S. Béjaoui, J. Lamontagne, E. Esbelin, J.M. Bonnerot, E. Brunon, P. Bourdot, Y. Pontillon. Presentation at FP7 FAIRFUELS Workshop, Stockholm, Sweden, February 2011

    Chemical States of Fission Products and Actinides in Irradiated Oxide Fuels Analyzed by Thermodynamic Calculation and Post-Irradiation Examination. K. Kurosaki, K. Tanaka, M. Osaka, Y. Ohishi, H. Muta, M. Uno, S.Yamanaka. Progress in Nuclear Science and Technology, Vol. 2, p.5-8 (2011) 

    Microstructural evolution and Am migration behavior in Am-containing MOX fuels at the initial stage of irradiation.
    K. Tanaka, S. Miwa, I. Sato, M. Osaka, T. Hirosawa, H. Obayashi, S. Koyama, H. Yoshimochi, K. Tanaka. Presentation at the 10th OECD Nuclear Energy Agency Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation, Mito, Japan, October 2008

    On the Oxidation State of UO2 Nuclear Fuel at a Burn-Up of Around 100 MWd/kgHM.
    C.T. Walker, V.V. Rondinella, D. Papaioannou, S. Van Winckel, W. Goll, R. Manzel. Journal of Nuclear Materials, Vol. 345, p. 192–205 (2005)

    Analysis of High Radioactive Materials in Irradiated DUPIC SIMFUEL Using EPMA. Jung, Yang Hong; Yoo, Bang Ok; Joo Yong Sun; Kim, Hee Mun; Jung In Ha; Kim, Myung Han. Journal of the Korean Radioactive Waste Society, Vol. 2(2), p. 125-133 (2004)

    Multiple voltage electron probe microanalysis of fission gas bubbles in irradiated nuclear fuel. M. Verwerft. Journal of Nuclear Materials, Vol. 282, p. 97-111, doi:10.1016/S0022-3115(00)00421-9 (2000)

  • 我们的部分EPMA用户 +

    A selection of CAMECA SX users

    University of Massachusetts, Department of Geosciences, USA
    UMass is home to the "Ultra-Chron" project, a collaboration between CAMECA and the University of Massachusetts for the development of a microprobe optimized for geochronology and trace element analysis. The microprobe facility at UMass has a main focus on monazite dating, but also performs analytical work on all kinds of high technology materials: ceramics, semiconductor microelectronics, fiber optics...

    UFRGS, Porto Alegre, Brazil
    The Institute of Geosciences at Federal University of Rio Grande do Sul received one of the first SXFive Electron MIcroprobe in South America, in 2014. Installed in the Department of Geosciences, the instrument is also used for a wide spectrum of material sciences, physics and chemistry research topics.

    Technical University of Clausthal, Germany
    The EPMA department at TU Clausthal is equipped with a SX 100 Electron Microprobe installed in 1996 to replace an aging JEOL JXA-3, and a SXFive installed in 2015.

    Ruhr University Buchum, Germany
    Installed in 2014, a SXFiveFE complements the SX 50 at the Electron Microprobe lab of the Ruhr-University Bochum, a central analytical facility within the Department of Geology, Mineralogy and Geophysics.

    Syracuse University, NY, USA
    The Syracuse University Electron Microprobe Laboratory, located within the Department of Earth Sciences serves as a user facility, encouragings collaborations among students and scientists from many disciplines at institutions and industry in the central New York region, nationally and internationally. It is equipped with a SXFive.

    CAMCOR, University of Oregon, USA
    CAMCOR is a characterization center at the University of Oregon open to outside clients that provides enabling infrastructure for research in chemistry, geology, archaeology, nanoscience, materials science, bioscience, and optics. It is equipped with 2 CAMECA microprobes, a SX 50 and a SX 100.

    University of Arizona, USA
    The Lunar and Planetary Laboratory at University of Arizona received it first CAMECA EPMA (SX 50 model) in 1990. A SX 100 was installed in late February 2010, the older instrument remaining in operation.

    Microanalysis Laboratory at Université de Laval, Quebec, Canada
    The Laboratoire de Microanalyse maintains a CAMECA SX 100 for microanalysis of geological and inorganic materials. The laboratory is available to researchers from Laval and other universities and acts as a regional facility for industrial research...

    The Natural History Museum, London, UK
    The Natural History Museum is an international leader in the scientific study of the natural world. Its Mineralogy Department operates 2 CAMECA electron microprobes under leadership from John Spratt. Recent projects have covered a wide range of mineral characterizations including a gem quality scandium end-member thortveitite and a new mineral mavlyanovite.

    R. Castaing Microcharacterization Center, Toulouse, France
    The University of Toulouse III is long term CAMECA EPMA user, with the first MS46 installed in 1973. Two microprobes were acquired simultaneously in 2014 to equip the recently created Centre de microcaractérisation Raimond Castaing, part of the Clément Ader Institute.

    The American Museum of Natural History, New York
    The electron microprobe facility at AMNH is a joint facility shared between the museum and Columbia University's Lamont-Doherty Earth Observatory. Earth scientists at Columbia University can operate the SX 100 microprobe from their remote location 18 miles north of New York City by means of a dedicated internet service.

    School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, UK
    The Manchester Electron Microprobe Facility offers a world-class electron beam microanalysis service to NERC funded researchers as well as other United Kingdom workers conducting research in the NERC science area. Those currently making use of the facility include: Igneous and metamorphic petrologists, Sedimentologists, Cosmochemists, Environmental geoscientists, Soil scientists and Science based archaeologists...

    UC Davis - Earth and Planetary Sciences Department, USA
    The Electron Microprobe Laboratory in the Earth and Science Building is equipped with a CAMECA SX 100.

    New Mexico Bureau of Geology & Mineral Resources, USA
    The 'Bureau' is a research and service division of the New Mexico Institute of Mining and Technology (NM Tech). The SX 100 at NM tech is used for a wide range of research projects, mostly in the areas of geology and material science (monazite geochronology, characterization of ore metals and mine dump material...

    Oregon State University, USA
    The SX 100 installed at the Marine Geology and Geophysics facilities within the College of Oceanic & Atmospheric Science also offers remote operational capabilities to Portland State University.

    Wits University, South Africa
    The Microscopy and Microanalysis Unit at the University of the Witwatersrand in Johannesburg, South Africa is equipped with a Field Emission EPMA. The SXFiveFE lab was inaugurated in August 2014.

    University of Johannesburg, South Africa
    The Central Analytical Facility of the Faculty of Science, University of Johannesburg (Spectrum) aims to become an African leader in the analytical field. The SX 100 at Spectrum is used for a wide range of mineralogical and metallurgical applications.

     

    Links to Microanalysis Societies

    Microbeam Analysis Society
    Formed in 1968, the MAS is an organization of professionals who work with or have an active interest in microbeam instrumentation. The Society provides a forum for members from industrial and academic settings, engaged in research, development, analysis and instrument manufacturing, to exchange ideas and practical experience. It is a sponsor of the annual Microscopy and Microanalysis Conference, and holds workshops with a focus on microanalytical topics

    European Microbeam Analysis Society
    EMAS was founded in 1987 as a scientific society focusing on microbeam analysis methodology. Its primary purposes are education, communication and innovation...

    Groupement National de Microscopie Electronique à Balayage et de MicroAnalyses (GN-MEBA)
    French Scanning Electron Microscopy and Microanalysis Group, formerly group 8 of the ANRT (Association Nationale de la Recherche Technique).


  • 软件 +

    • Peaksight software
      PeakSight

      PeakSight专为CAMECA电子探针显微分析仪而开发,支持使用独特的工具和功能来采集和分析图像、光谱及定量数据。

      继续阅读

  • 升级套件 +

    检测

    其他波长色散光谱仪 (适用于配备3或4的仪器)垂直光谱仪)或其他WDS crytals (对于现有的光谱仪)
    使用额外的光谱仪,配备2或4个晶体,增加仪器的分析范围。使用带有2个大晶体的光谱仪,提高检测限。  或添加不同的晶体以增加分析范围或优化元素检测。

    能量色散光谱仪 (适用于配备电动光学变焦的仪器)
    并行检测从B到U的所有元素。最多8个EDS频道 原位可变光圈”在X射线映射模式中除了WDS之外还可以使用。使用EDS和WDS校准进行定量分析。

    TACTIS EDS Hypermap
    (仅适用于SXFive或SXFiveFE)
    收集每个像素的完整EDS光谱并同时提取定量结果。
    适用于SXFive&仅限SXFiveFE。


    BSE低kV探测器
    (仅适用于SXFive或SXFiveFE)
    使用BSE低kV探测器(空间分辨率为15nm或更高,5kV),可以更准确地获得卓越的图像质量并识别感兴趣的区域。

    阴极发光检测器 (适用于所有乐器)
    显示材料中的缺陷和杂质。


    配件

    防污系统
    (适用于所有乐器)
    将样品的碳污染减少8倍。

    用于在真空下运输样品的气锁兼容系统
    对于对空气敏感的样品或放射性样品

    外部点记录器


    软件

    适用于CAMECA SX 100的Peak Sight Windows™软件升级
    对于配备有PC工作站的 SX 100 SXFive 仪器,可以进行Peak Sight更新。查看此链接上提供的最新Peak Sight版本。

    对于配备SUN工作站的 SX 100 升级套件包括一台PC计算机,用于仪器控制和数据评估的Peak Sight软件,培训和手册

    TACTIS触摸屏 (仅适用于SXFive或SXFiveFE)
    受益于双重界面:"初学者"具有触摸屏工具操作和访问简化选项/“专家””对于熟练的用户。非常适合在多用户设施中充分利用单一工具。

    软件模块可用于地质,材料科学和冶金。其中:
    • STRATAGem-SX:轻松处理薄膜分析数据。
    • 粒子搜索软件:通过导出其坐标自动测量样品的每个粒子。
    • Geochronology软件:使用Montel公式测量U,Th和Pb,确定具有地质意义的年龄。

    SX Results / PC-Unix:用于SX50 / 100数据的Peak Sight Windows TM 处理软件用Unix SXRay100 / SXN50软件获得
    这个基于PC的软件是Windows&trade中包含的处理部分; Peak Sight SX 100自动化,以及导入和转换模块,以接受使用基于UNIX的SX100 / 50 CAMECA软件程序获取的数据。从任何类型的应用程序(频谱,图像,配置文件...)发出的数据都在一个窗口中处理。该程序可以作为多文档界面工作,允许同时显示多个数据。它提供Microsoft Office&trade的完整复制粘贴功能;以及内置的Word和交易访问;和Excel™模板,可以轻松,自动生成分析报告。

    包括以下模块:WDS S pectra,图像和线轮廓,定量数据,阶段ID ,相位等级,轮廓离线,叠加。
    可选模块可用于特定应用程序:

    • 选项1:映射Quant,Mlayer(多层量化程序)
    • 选项2:Geo Quant(地质定量分析),Geochronology:Age Dating(包括Mapping Quant)年龄图(年龄定量)

    不要犹豫,联系您的本地代理商CAMECA销售部门了解更多信息。