Skip to content

IMS Wf和SC Ultra

适用于高级半导体应用的高性能低能量SIMS
IMS Wf和SC Ultra经专门设计,可充分满足高级半导体对动态SIMS测量日益增长的需求该仪器可提供大范围的冲击能量(100 eV到10 keV),不影响质量分辨率和一次离子束密度,可确保在高通量条件下为最具挑战性的应用提供无与伦比的分析性能:超浅能量和高能量注入物、超薄氮氧化物、高k金属栅极、硅锗掺杂层,Si:C:P结构、PV和LED器件及石墨烯等等。
  • 产品概述 +


    从标准到超浅深度剖析
    对高级半导体进行分析的首要条件是优化SIMS分析条件以进行超浅深度剖析,而无需舍弃标准深度剖析应用。CAMECA因此开发了独特的SIMS仪器设计,能够溅射具有大范围碰撞能量的样品:从用于厚结构的高能量(keV范围)到用于超薄结构的超低能量(≤150eV)。这种碰撞能量选择的灵活性适用于不同的控制良好的溅射条件(物种、入射角等)。

    CAMECAIMS WfSC Ultra是唯一一款提供此类极限低碰撞能量(EXLIE)功能的SIMS仪器,且在高质量分辨率和高透过率方面毫不逊色。

    高自动化水平
    随着SIMS技术的成熟,用户希望能够降低实现高再现性和高精度测量所需的专业知识要求。未来发展趋势显然是无人值守的自动分析。CAMECA IMS Wf和SC Ultra利用计算机自动化应对该挑战,确保完全控制所有分析参数(分析方案、仪器设置等)。

    气锁系统、样品台和分析室已进行了优化,最多可容纳300毫米的晶圆(IMS Wf型号),并可在一批次中装载大量样品——在IMS Wf型号中最多可装载100个样品,同时还提供气锁和分析室之间的完全电动化转移。

    凭借高自动化水平,IMS WfSC Ultra可执行快速深度剖析,具有优化的样品通量和出色的测量稳定性,确保了前所未有的SIMS工具生产率。
  • 查看网络研讨会 +

    • Dynamic SIMS for Semiconductors

      星期四, 九月 16, 2021

      A review of a broad array of IC applications with Dynamic SIMS, from deep to ultra-shallow implant depth profiling in Si-based semiconductors to compositional analysis of thin multilayers in patterned wafer pads, optoelectronics, 2D and non-planar 3D structures. Speaker: Pawel Michałowski, expert-user of CAMECA SC Ultra SIMS at Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Poland
      Duration : 20 minutes
      Click here to view
  • 看看IMS Wf和SC Ultra能够做什么 +

  • 文档 +

  • 科学出版物 +


    Below is a selection of research articles by users of CAMECA IMS Wf and SC Ultra

    You are welcome to send us any missing references, pdf and supplements!
    Please email cameca.info@ametek.com.

    Oxygen out-diffusion and compositional changes in zinc oxide during ytterbium ions bombardment.
    Paweł Piotr Michałowski Jarosław Gaca Marek Wójcik Andrzej Turos. Nanotechnology 29, 425710 (2018)
    http://iopscience.iop.org/article/10.1088/1361-6528/aad881

    Thermally activated double-carrier transport in epitaxial graphene on vanadium-compensated 6H-SiC as revealed by Hall effect measurements. Tymoteusz Ciuk, Andrzej Kozlowski, Paweł Piotr Michałowski, Wawrzyniec Kaszub, Michal Kozubal, Zbigniew Rekuc, Jaroslaw Podgorski, Beata Stanczyk, Krystyna Przyborowska, Iwona Jozwik, Andrzej Kowalik, Pawel Kaminski. Carbon 139, 776-781 (2018)
    https://www.sciencedirect.com/science/article/pii/S0008622318306973

    The role of hydrogen in carbon incorporation and surface roughness of MOCVD-grown thin boron nitride. Piotr A. Caban, Dominika Teklinska, Paweł P. Michałowski, Jaroslaw Gaca, Marek Wojcik, Justyna Grzonka, Pawel Ciepielewski, Malgorzata Mozdzonek, Jacek M. Baranowski. Journal of Crystal Growth 498, 71-76 (2018)
    https://www.sciencedirect.com/science/article/pii/S0022024818302756

    Oxygen-induced high diffusion rate of magnesium dopants in GaN/AlGaN based UV LED heterostructures. Paweł Piotr Michałowski, Sebastian Złotnik, Jakub Sitek, Krzysztof Rosińskia and Mariusz Rudzińskia. Physical Chemistry Chemical Physics 20, 13890-13895 (2018)
    http://pubs.rsc.org/en/Content/ArticleLanding/2018/CP/C8CP01470A

    Self-organized multi-layered graphene–boron-doped diamond hybrid nanowalls for high-performance electron emission devices. Kamatchi Jothiramalingam Sankaran, Mateusz Ficek, Srinivasu Kunuku, Kalpataru Panda, Chien-Jui Yeh, Jeong Young Park, Miroslaw Sawczak, Paweł Piotr Michałowski, Keh-Chyang Leou, Robert Bogdanowicz, I-Nan Lin and Ken Haenen. Nanoscale 10, 1345-1355 (2018)
    http://pubs.rsc.org/en/content/articlelanding/2018/nr/c7nr06774g

    Formation of a highly doped ultra-thin amorphous carbon layer by ion bombardment of Graphene
    . Paweł Piotr Michałowski, Iwona Pasternak, Paweł Ciepielewski, Francisco Guinea and Włodek Strupiński. Nanotechnology 29, 305302 (2018)
    http://iopscience.iop.org/article/10.1088/1361-6528/aac307

    Contamination-free Ge-based graphene as revealed by graphene enhanced secondary ion mass spectrometry (GESIMS). Paweł Piotr Michałowski, Iwona Pasternak and Włodek Strupiński. Nanotechnology 29, 015702 (2018).
    http://iopscience.iop.org/article/10.1088/1361-6528/aa98ed

    Influence of hydrogen intercalation on graphene/Ge(0 0 1)/Si(0 0 1) interface. Justyna Grzonka, Iw ona Pasternak, Paweł Piotr Michałowski, Valery Kolkovsky and Włodek Strupiński. Applied Surface Science 447, 582-586 (2018).
    https://www.sciencedirect.com/science/article/pii/S0169433218309838

    Characterization of the superlattice region of a quantum cascade laser by secondary ion mass spectrometry. Paweł Piotr Michałowski, Piotr Gutowski, Dorota Pierścińska, Kamil Pierściński, Maciej Bugajski and  Włodek Strupińskiac. Nanoscale 9, 17571-17575 (2017).
    http://pubs.rsc.org/en/Content/ArticleLanding/2017/NR/C7NR06401B

    Graphene Enhanced Secondary Ion Mass Spectrometry (GESIMS). Paweł Piotr Michałowski, Wawrzyniec Kaszub, Iwona Pasternak and Włodek Strupiński. Scientific Reports 7, 7479 (2017).
    https://www.nature.com/articles/s41598-017-07984-1

    Reproducibility of implanted dosage measurement with CAMECA Wf. Kian Kok Ong, Yun Wang and Zhiqiang Mo. IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits (2017).
    DOI: 10.1109/IPFA.2017.8060158

    Investigation of Cs+ bombardment effects in ultra-thin oxynitride gate dielectrics characterization by DSIMS. Yun Wang, Kian Kok Ong, Zhi Qiang Mo, Han Wei Teo, Si Ping Zhao. IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits (2017).
    DOI: 10.1109/IPFA.2017.8060216


    Secondary ion mass spectroscopy depth profiling of hydrogen-intercalated graphene on SiC.
    Pawel Piotr Michalowski, Wawrzyniec Kaszub, Alexandre Merkulov and Wlodek Strupinski. Appl. Phys. Lett. 109, 011904 (2016).
    http://scitation.aip.org/content/aip/journal/apl/109/1/10.1063/1.4958144

    SIMS depth profiling and topography studies of repetitive III–V trenches under low energy oxygen ion beam sputtering. Viktoriia Gorbenko, Franck Bassani, Alexandre Merkulov, Thierry Baron, Mickael Martin, Sylvain David and Jean-Paul Barnes. J. Vac. Sci. Technol. B 34, 03H131 (2016).
    http://dx.doi.org/10.1116/1.4944632 

    Kr implantation into heavy ion irradiated monolithic UeMo/Al systems: SIMS and SEM investigations. T. Zweifel, N. Valle, C. Grygiel, I. Monnet, L. Beck, W. Petry (2016), Journal of Nuclear Materials, Volume 470, Pages 251-257. doi:10.1016/j.jnucmat.2015.12.039.

    Ion beam characterizations of plasma immersion ion implants for advanced nanoelectronic applications. M. Veillerot, F. Mazen, N. Payen, J.P. Barnes, F. Pierre (2014), SIMS Europe 2014, September 7-9, 2014.

    Characterization of arsenic PIII implants in FinFETs by LEXES, SIMS and STEM-EDX. Kim-Anh Bui-Thi Meura, Frank Torregrosa, Anne-Sophie Robbes, Seoyoun Choi, Alexandre Merkulov, Mona P. Moret, Julian Duchaine, Naoto Horiguchi, Letian Li, Christoph Mitterbauer (2014), 20th International Conference on Ion Implantation Technology (IIT), 2014. DOI: 10.1109/IIT.2014.6940011.

    Cesium/Xenon dual beam sputtering in a Cameca instrument.
    R. Pureti, B.Douhard, D.Joris, A.Merkulov and W.Vandervorst. Surface and Interface Analysis. Volume 46, Issue S1, pages 25–30, November 2014

    Si- useful yields measured in Si, SiC, Si3N4 and SiO2: comparison between the Strong Matter technique and SIMS. B.Kasel and T.Wirtz. Surface and Interface Analysis. Volume 46, Issue S1, pages 39–42, November 2014 

    Unravelling the secrets of Cs controlled secondary ion formation: Evidence of the dominance of site specific surface chemistry, alloying and ionic bonding. K. Wittmaack. Surface Science Reports. Volumn 68, Issue 1, pages 108–230, 1 March 2013

    The secondary ions emission from Si under low-energy Cs bombardment in a presence of oxygen. A. Merkulov. Surface and Interface Analysis. Volume 45, Issue 1, pages 90–92, January 2013

    Application of extra-low impact energy SIMS and data reduction algorithm to USJ profiling. D. Kouzminov, A. Merkulov, E. Arevalo, H.-J. Grossmann. Surface and Interface Analysis. Volume 45, Issue 1, pages 345–347, January 2013 

    Application of extra-low impact energy SIMS and data reduction algorithm to USJ profiling. D. Kouzminov, A. Merkulov, E. Arevalo, H.-J. Grossmann. Surf. and Interface Analysis, 5 Aug 2012, DOI: 10.1002/sia.5138.

    The secondary ions emission from Si under low-energy Cs bombardment in a presence of oxygen. A. Merkulov. Surf. and Interface Analysis, 5 Aug 2012, DOI: 10.1002/sia.5132 

    Experimental studies of dose retention and activation in fin field-effect-transistor-based structures. Jay Mody, Ray Duffy, Pierre Eyben, Jozefien Goossens, Alain Moussa, Wouter Polspoel, Bart Berghmans, M. J. H. van Dal, B. J. Pawlak, M. Kaiser, R. G. R. Weemaes, and Wilfried Vandervorst (2010), Journal of Vacuum Science & Technology B, Volume 28, Issue 1. C1H5. doi: 10.1116/1.3269755.

    Sputtering behavior and evolution of depth resolution upon low energy ion irradiation of GaAs.
    M.J.P. Hopstaken, M.S. Gordon, D. Pfeiffer, D.K. Sadana, T. Topuria, P.M. Rice, C. Gerl, M. Richter, C. Marchiori. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. Volume 28, Issue 6, 1287, 18 November 2010

    Advanced SIMS quantification in the first few nm of B, P, and As Ultra Shallow Implants.
    A.Merkulov, P.Peres, J.Choi, F.Horreard, H-U.Ehrke, N. Loibl, M.Schuhmacher, Journal of Vacuum Science & Technology B. 28, C1C48 (2010) ; doi:10.1116/1.3225588

    Chemical Erosion and Transport: Transport and Deposition of First Wall Impurities. Francesco Ghezzi (2009), CONSIGLIO NAZIONALE DELLE RICERCHE. TASK PWI-08-TA-06. 

    Long-term Reproducibility of Relative Sensitivity Factors Obtained with CAMECA Wf. D. Gui, ZX Xing, YH Huang, ZQ Mo, YN Hua, SP Zhao, LZ Cha. Applied Surface Science, Volume 255, Issue 4, Pages 1427–1429 (2008)

    EXLE-SIMS: Dramatically Enhanced Accuracy for Dose Loss Metrology. W.Vandervorst, R.Vos, A.J.Salima, A.Merkulov, K. Nakajimac and K.Kimura. Proceedings of the 17th International Conference on Ion Implentation Technology, IIT 2008, Monterey, CA, USA. AIP Conf. Proc. Vol. 1066 (2008), 109-112

    Semiconductor profiling with sub-nm resolution: challenges and solutions. W.Vandervorst, App. Surf. Science 255 (2008) 805

    Roughness development in the depth profiling with 500eV O2 beam with the combination of oxygen flooding and sample rotation. D. Gui, Z.X.Xing, Y.H.Huang, Z.Q.Mo, Y.N.Hua, S.P.Zhao and L.Z.Cha, App. Surf. Science 255 (2008) 1433

    Depth profiling of ultra-thin oxynitride date dielectrics by using MCs2+ technique. D.Gui, Z.X.Xing, Y.H.Huang, Z.Q.Mo, Y.N.Hua, S.P.Zhao and L.Z.Cha (2008), App. Surf. Science, Volume 255, Issue 4, Pages 1437-1439. doi:10.1016/j.apsusc.2008.06.047.

    Impurity measurement in silicon with D-SIMS and atom probe tomography. P.Ronsheim, App. Surf. Science 255 (2008) 1547. 

    SIMS depth profiling of boron ultra shallow junctions using oblique O2 beam down to 150eV. M.Juhel, F.Laugier, D.Delille,C.Wyon, L.F.T.Kwakman and M.Hopstaken, App. Surf. Science 252 (2006), 7211

    Boron ultra low energy SIMS depth profiling improved by rotating stage. M.Bersani, D.Guibertoni, at al, App. Surf. Science 252 (2006) 7315

    Comparison between SIMS and MEIS techniques for the characterization of ultra shallow arsenic implants. M.Bersani, D.Guibertoni, et al, App. Surf. Science 252 (2006) 7214

    SIMS Depth Profiling of SiGe:C structures in test pattern areas using low energy Cs with a Cameca Wf , M.Juhel, F. Laugier, App. Surf. Science 231-232 (2004) 698

    Sputtered depth scales of multi-layered samples with in situ laser interferometry: arsenic diffusion in Si/SiGe layers. P.A.Ronsheim, R.Loesing and A.Mada, App. Surf. Science 231-232 (2004) 762

    Short-term and long-term RSF repeatability for CAMECA SC Ultra SIMS measurements. M. Barozzi, D. Giubertoni, M. Anderle and M. Bersani. App. Surf. Science 231-232 (2004) 768-771

    Toward accurate in-depth profiling of As and P ultra-shallow implants by SIMS. A. Merkulov, E. de Chambost, M. Schuhmacher and P. Peres. Oral presentation at SIMS XIV, San Diego, USA, Sep. 2003. Applied Surface Science 231–232 (2004) 640–644

    Accurate on-line depth calibration with laser interferometer during SIMS profiling experiment on the CAMECA IMS Wf instrument. O. Merkulova, A. Merkulov, M. Schuhmacher, and E. de Chambost. SIMS XIV, San Diego, USA, Sep. 2003. Applied Surface Science 231–232 (2004) 954–958

    Latest developments for the CAMECA ULE-SIMS instruments: IMS Wf and SC Ultra. E. de Chambost, A. Merkulov, P. Peres, B. Rasser, M. Schuhmacher. Poster for SIMS XIV, San Diego, USA, Sept 2003. Applied Surface Science 231–232 (2004) 949–953

  • 我们的一些用户 +

    Below a small selection of IMS Wf and SC Ultra users. Many actors in the semiconductor industry wish to remain confidential and cannot appear here.

    ITC-irst (Fondazione Bruno Kessler), divisione FSC, Italy
    The FSC division led by Mariano Anderle develops and applies new surface analytical methodologies on last generation microelectronic devices and materials. It is involved in long term collaborations with several leading microelectronics companies. Masterpiece of the Materials and Analysis for Micro-Electronics lab under the direction of Massimo Bersani is a CAMECA IMS SC Ultra.

    CNT, Fraunhofer-Center Nanoelektronische Technologien, Dresden, Germany
    This public-private partnership between the Fraunhofer Gesellschaft and leading semiconductor manufacturers aims at developing new process technologies for nanoelectronics. It is equiped with state-of the-art instruments for materials charactrization, among which a CAMECA IMS Wf.

    Science and Analysis of Materials (SAM), Luxemburg
    A departement of Gabriel Lippmann public research center, SAM started its activities in 1992. Both a fundamental and applied research facility as well as an analytical service laboratory, it provides assistance to more than 100 industrial and academic partners worldwide. It is equipped with a CAMECA SC Ultra and a NanoSIMS 50.

  • 软件 +

    • SmartPRO

      适用于 CAMECA IMS 7f-Auto、IMS Wf 和 SC 超二次离子质谱仪的全新 SmartPRO 软件包将 Chain Analysis 和 WinCurve 结合在一个无缝集成的环境中,并添加了实时数据处理和自动化功能,从而提高了易用性、生产率和数据质量。

      继续阅读

    • WinCurve dataprocessing sofware
      WinCurve

      WinCurve专为CAMECA SIMS仪器而开发,可在用户友好的环境中提供强大的数据处理和可视化功能。

      继续阅读

    • WinImage Software
      WinImage II

      WinImage II专为CAMECA SIMS仪器而开发,可在PC-Windows™环境中提供强大的数据处理和可视化功能。

      继续阅读

  • 升级套件 +

    自动化&软件 - 来源 - Airlock - Specimen Chamber
    自动化&软件

    PC-Automation(Wf / SCU)
    PC-Automation系统取代SUN系统,可实现全自动化和自动化。无人值守操作,大大提高了易用性。
    请注意,下面列出的大多数升级套件只能安装在IMS Wf 和配备PC-Automation的SC Ultra仪器。

    后处理 (Wf / SCU)
    用于离线数据处理的PC站(不包括CAMECA软件)。


    桌面控制复制 (Wf / SCU)
    额外的PC,键盘,CAMECA键盘,屏幕......确保在实验室分为两部分时优化操作舒适性。


    WinCurve软件(Wf / SCU)
    提供强大的SIMS数据处理功能。图形功能以及简单的报告创建功能。


    WinImage软件(Wf / SCU)
    提供强大的SIMS图像处理功能,提供标准版或扩展版。


    远程监控 (Wf / SCU)
    实时显示软件许可证,提供对所有仪器参数的远程访问,从而允许操作员从他/她自己的PC远程调谐和运行仪器。

    返回页首

    来源

    低能量铯离子源 (Wf / SCU )
    凭借这种新型高亮度铯离子源,IMS Wf / SCU现在可以执行极低冲击深度剖析并分析具有纳米深度分辨率的超薄层。

    高亮度射频等离子氧离子源 (Wf / SCU)
    与传统的DUO-plasmatron相比,RF等离子体源可以使用超低能量O2主光束实现显着的性能提升。

    标本室

    电动Z-运动阶段 (Wf / SCU )
    取代压电舞台运动

    Turbo Detection (Wf / SCU)
    涡轮分子泵取代现有的离子泵。改善检测系统的真空度。

    返回页首